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Abstract-Two-dimensional elastic stress field behaviour near the mouth of a surface crack in an
isotropic half-plane is examined. It is shown that a dislocation density simulating the crack opening
and consequently the stress field has a singularity at the point in question. The type of singularity
is determined by the distribution of the load applied as well as by the angle between the crack
contour and the surface. Two known solutions for stress intensity factors of a uniformly loaded
crack are compared. the first taking the singularity into account and the second neglecting it. It is
found that the solutions differ significantly when the crack is inclined at an acute angle.

1. INTRODUCTION

The contact of two bodies under severe loading often produces surface-breaking cracks
which influence the character of the deformation and may eventually lead to failure.
Phenomena of this kind occur in many situations such as cracking of gear teeth or machine
tools, crack growth in foundations of dikes or in civil engineering.

Usually modelling a surface crack numerically the assumption is made that the stress
field behaviour in the vicinity of the crack mouth is regular [see, for example, Savruk (1981)
or Nowell and Hills (1987) and references].

Certainly the following purely geometric considerations led to the conclusion that there
should be no stress field singularity. Indeed, the crack mouth can be presented as a
combination of two wedges (BAD and CA'D in Fig. I). Each of them has an angle less
than 1t and hence no singularities in their eigensolutions arise (Ufland, 1963). However the
situation is also dependent on the boundary conditions. If, for instance, the crack is
subjected to a uniform loading (Fig. I) or the half-plane boundary is loaded by a stamp so
that the crack is growing from its edge (which corresponds to many practically important
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Fig. I. A surface-breaking crack inclined at an angle ex and loaded by normal and shear tractions
along its shores.
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Fig. 2. An example of a crack propagating from the surface subjected to local loadmg.

cases. see Fig. 2). then one can expect that the discontinuous boundary conditions will
produce singularities in stress and deformation fields. This consideration calls for a more
thorough examination of the problem.

The stress-strain field in a wedge under various boundary conditions has been con­
sidered by the power extension method by Williams (1952). However, power series fail to
reflect every possible type of singularity. which, as will be shown. may be logarithmic.
Direct application of the Mellin transform for the analysis of two edge-bonded elastic
wedges (Bogy, 1971) allows the right type of singularities to be obtained.

We tried to focus our attention on the case of finite surface crack. The general problem
for a wedge with a crack grown from its edge (Khrapkov, 1971) was solved in quadratures.
The solution implicitly contains the right behaviour of stress field at the vertex. However.
the applicability of the analytical solutions is limited and in order to apply numerical
approaches properly one has to know the explicit form of the singularity. The determination
of this form and classification of possible cases arc the aims of the present paper.

2. FORMULATIO:--:

Consider a half-plane with a linear surface crack inclined to the boundary at an angle
"J. (Fig. I). Let us suppose the crack length to be unity. The crack surfaces arc loaded by
normal and shear stresses all(~), rll(e), where ~ is the coordinate along the crack axis
measured from the crack mouth (hence 0 ~ e~ I corresponds to the crack).

The problem can be reduced to an integral equation in the complex plane in the
following manner. The crack is replaced by a continuous distribution of edge dislocations
of unknown density. The expressions for stresses in a half-plane due to a single dislocation
arc well known. Summing up the contributions of each dislocation to the stress values for
every point on the line corresponding to the crack contour and equating the result to the
applied stresses (all(~), rll(~» the integral equation for the unknown dislocation density can
be obtained. This equation [see, for example, Savruk (1981)] in the notation adopted here
has the form:

(1)

r'" .
Here the complex dislocation density is denoted by 9'(~) = u', + iU'2' i being ..j - I and
(u,. It 2) the components of displacement discontinuity vector in the Cartesian coordinate
system (X"X2), shown in Fig. I, the prime denoting differentiation by ~. the overbar
denoting complex conjugation and (J = G/41t( I - v) for plane strain (G is the shear modulus,
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v-Poisson's ratio). For the purposes of further consideration (I) can be rewritten intro­
ducing kernel functions K 1 and K~:

(2)

where

I , ~ ~
K.(e.I'/.IX):::;: -I'- +B(e.I'/. -IX)+['r+~I'/(I-4e·'2+e-12)

.,,-1'/

+ eZ(e -Zi2 _e- 4i2 +e -6i2)] BJ(e, 1'/, IX),

K~(~. 1'/. IX) :::;: e{(I_e- 2i2 ) BZ(e. 1'/, IX) +e~i>(I-ezl»B~(e, 1'/, -IX)],

I
B(~.I'/,IX):::;: I'/_ee-Zi2 '

3. ANALYSIS OF THE SINGULARITY

rt is convenient now to present eqn (2) as a system of two real integral equations:

(3)

where

Kit:::;: Re[K.(e.I'/.IX)+Kz(e.I'/,IX)],

K 1Z = -1m [KI (e. '1. IX) - K 2(e, ".a)].

K 21 = 1m [Kt(e, '1, a)+ K 2(e,'1, a)],

Ku :::;: Re [K 1(e. 1'/. IX) - K 2(e, 1'/. a»).

(4)

(5)

Analytical investigation of the integral equations for problems of this type may often
be accomplished by reducing the system to be solved to the conjugation problem by
application of the Mellin transform:

/(0:::> F(p) = LX) fGW' dC. (6)

In the case discussed the unknown vector u' which is initially introduced for 0 ~ e~ I
must be additionally assumed to be zero over the semi-infinite interval e~ I. Thus the
Mellin transform for the unknown vector u' becomes:

(7)

It is also convenient to define the functions q+(p) and q-(p) as the transforms of the
stress distributions in the appropriate intervals. We introduce:
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(8)

where u0(0 is the given vector of tractions applied on the crack line, and

(9)

is an unknown function appearing due to the extension of eqn (8) to a semi-infinite interval
and having the sense of the transform of the unknown stress vector u acting inside the body
over the continuation of crack line ad infinitum.

Making use of the variable transformation in the form ~ = ~. '7 the system (3) may be
rewritten as:

( 10)

Thus it can be seen that the kernel is of the Mellin convolution type.
Applying the Mellin transform to (10) and in view of the definitions being made one

obtains:

{lQ(p)(P+(p) = at(p)+u (p). ( II )

Here the matrix Q(p) is the Mellin transform for K( I, ~). A more convenient way of
presenting (II) is:

I
(/J t (p) = {/ G(p)[at (p) +a (p)]

where G(p) = Q l(p) and has the form [see Khrapkov (1971)]:

( 12)

G(p) = (G11(.P) G1Z(P)) (13)
GZ1(p) Gzz(p)

Gil (p) = HD(p. a)[sin 2p:x +p sin 2:x) + D(p. rr - a)[sin 2p(rr - a) +p sin 2(rr - a)]}

Gdp) = p(p-I) sinz a[D(p,:X) - D(p, rr-:x)]

G 21 (P) = -p(p+l)sinZet[D(p,Cl)-D(p,rr-et)]

Gdp) = HD(p, Cl)[sin 2pet - p sin 2:x] + D(p, rr - :x)[sin 2p(rr - a) - p sin 2(n - :x)]} (14)

The functions denoted by the superscript" + " are regular for Re p ~ O. This follows
from a physically obvious fact that the tractions Uo and dislocation density u' are integrable
over the interval (0, I).

The function u- is regular for Re p ~ 0, since the stresses u must be integrable over
the interval (I, (0) according to the equilibrium conditions.

In order to make further conclusions the behaviour of the matrix G in the complex
plane must be discussed. The matrix has a pole of first order in p = O. However,
u+(O)+u-(O) = 0 since the half-plane remains in equilibrium. Therefore, eqn (10) is
satisfied for Re p = 0 (along the imaginary axis).

Equation (12) was obtained (Khrapkov, 1971) by an alternative means (applying the
Mellin transform to the general elasticity equations) and was solved analytically using a
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T ®

Fig. 3. The contour in the complex p-plane chosen for evaluating the inverse Mellin transforms
using the Jordan's lemma.
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factorization technique. For the analysis of a singularity at the crack mouth ({::= 0)
however it is sufficient to apply the reverse Mellin transform to (12) :

(16)

It is now convenient to express the integral as a sum of residues, choosing the contour
in the complex plane p as shown in Fig. 3. Assuming T -+ 00 and applying the Jordan's
Icmma one can obtain:

(17)

The tcrms in (17) which correspond to such poles Pi that Re Pi < - 1 tend to zero for ( -+ 0
and therefore make no.contribution to the singularities. Hence one can confine the analysis
to the poles with - I ~ Re Pi ~ O. Function o'-(P) is regular for Re P < 0 and therefore the
singularities of u' may be connected either with poles of G(p) or with poles of G(p)O'+(p).
The former may be considered as the term corresponding to the geometry induced singu­
larities (i.e. they arise in the eigensolution of the problem), while the latter term reflects the
influence of both the geometry and the boundary conditions (i.e, the traction variation
along the crack).

In general the components Gil (P) and G12(P) have the only first order pole for P = - 1
and G21 (p), G22 (P) display regular behaviour in the whole region specified. In the special
case of IX ::= 1t/2 the components GI2 = G21 = 0 and diagonal components Gil and G22 are
regular.

Thus one can conclude that, as anticipated, there are no pure geometry-induced
singularities (as found by the eigensolution) for u'«() at , ... O.

The poles ofO'+(p) are determined by the traction profile in the vicinity ofcrack mouth.
Several important cases can be emphasized:

(1) If the components of 0'0(0 tend to zero as any power of (, then 0'+ (p) is regular
for - I ~ Re p ~ O. In this case no singularities arise in dislocation density.

(2) If the components of O'o«) are limited but non-zero when' -+ 0 then 0'+ (p) has a
pole of first order for P ::= - I. Hence in general G(p)O'+ (p) has a second-order pole in this
point. It leads to the logarithmic singularity for the dislocation density component U'l (but
not for uz) at { = 0, i.e, in the vicinity of this point U'l ~ 00+01 In (, Uz ~ boo

A practically important case arising in problems with uniform tensile stress 0'xx = 0'''''

at infinity should be noted. The problems of this kind may be reduced to the type discussed
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by decomposing the stress field into a sum of uniform stresses (In = (J '- and the field arising
from uniform tractions (J.G) = - «(J x; /2)( I - cos 2:r:). r(~) = «(J'<; /2) sin 22 applied along the
crack surface. In this case the kernel in (16) is in effect represented by the product of matrix
G by a vector column of tractions

+ ((J.(P») (JT. (I-COS22)(J (p) = = - "---
r(p) 2(p+l) -sin22 .

(18)

As can be derived by virtue of expressions (14) for the components of matrix G and
(18) for the traction vector. the terms. corresponding to the first order pole of G(p). caned
out in the product G(p)' (J+(p). Thus. as could be expected. in this case the stress field (as
well as the dislocation density) behave regularly.

(3) If the components of (J(l(~) have a logarithmic singularity near ~ = 0 (this cor­
responds to a practically important case of a crack growing from an edge of half-plane
boundary segment loaded by built-up forces produced. for example. by a stamp). then
(1' (p) has a second-order pole for p = - I. which gives rise to a singularity in dislocation
density: /I', generally behaves like ao+a, In (+a~ In~ (and /I'~ ~ hn+hlln~. For:x = rr i<2:
/I', ~ a(l+al In (. U'2 ~ ho+h 1 In~.

For stronger singularities in the traction distribution (1o«() in the vicinity of the surl~lce

one can expect (1+(p) to have additional poles. For instance. if O'(l«() ~ ( '2 then 0'+(1')

has a pole at p =:: - 1/2. and the dislocation density appropriately behaves like ( 12.

In a general case of traction profile the problem can be similarly analyzed in the manner
discussed above.

It must be noted that the stress field in the vicinity of the crack mouth generally has
the same order singularities as the dislocation density. This can be readily derived from
the presentation of stresses and dislocation densities as functions of the Kolossov
Muskhclishvili potentials (Muskhclishvili. 1953).

4. DISCUSSION

The analysis presented shows that in the general situation dislocation density as well
as the stress field components display singularities at the crack mouth. the order of these
singularities depending on the profile of the stresses along the crack or at infinity. Another
interesting result is that even if the tractions at the crack mouth are nil. the dislocation
density may differ from zero at this point. which sometimes calls for amendments to the
computational procedures (Savruk. 1981).

However. it seems rational to analyze the influence of the singularity on the stress state
and stress intensity factors depending on the entire traction profile and the crack angle to
the surface. This analysis can be done for a common case of uniform traction by comparing
two solutions for stress intensity factors. one of which (Savruk. 1981) does not take the
singularity into account and the other (Khrapkov. 1971) implicitly using it. In order to
facilitate this comparison it is necessary to integrate Khrapkov's solution (which is per­
formed for a point force on the crack contour) over the crack length. The results can be
presented in a form:

( 19)

Here A is a matrix and its values for different angles ex are presented in Table 1.
II is seen that the difference between these two approaches is marked when the crack

is at a very shallow angle to the surface. becoming important for x < rr/4.
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Table I.

Matrix A

Solution (I) Solution (2)
:x No singularity With singularity

" 1.121 0 1.121 01t,_
0 1.121 0 1.121

1t,4 1.596 -0.186 1.615 -0.2\8
-0.508 1.237 -0.501 1.243

1til:!
5.050 -0.421 3.192 -0.248

-3.161 1.754 -5.089 1.831

5. CONCLUSION
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The above analysis showed. that both the dislocation density and the stress field at the
mouth of a surface crack display singular behaviour ofan order depending on the geometry
and tractions applied at infinity or along the crack contour. The presence of this singularity
significantly affects the stress field around the crack. However. the influence on the SIF for
the case of uniform loading can be neglected for angles greater than rc/4. For more com­
plicated cases the order of this singularity must be assessed prior to applying some numerical
approach. and appropriate weight functions or elements must be chosen.
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